DECARBOXYLATION OF CYCLIC β-ENAMINOKETOESTERS WITH BORIC ACID

Philippe DELBECQ, Jean-Pierre CELERIER, and Gérard LHOMMET*

Laboratoire de Chimie des Hétérocycles and URA 455, Université Pierre et

Marie Curie, 4 Place Jussieu, 75252 PARIS cedex. France

Summary: Cyclic β -enaminoketoesters prepared by condensation between lactim ethers and β -ketoesters are decarboxylated without deacylation by thermolysis in presence of boric acid to lead stereospecifically to cyclic β -enaminones.

Cyclic β -enaminones 1 are important building blocks for synthesis of natural products like ipalbine, ¹ myrtine ² or methylpelletierine. ³ These compounds are unstable and just a few of them have been isolated but often after transformation into β -enaminothioketones ⁴. The general method mostly used for the preparation of cyclic β -enaminones involves a sulfur extrusion between a thiolactam and a α -halomethyl ketone as described by Eschenmoser & coll. ⁵ but this requires the preparation of such ketones. In connection with our research on the use of boric acid in heterocyclic synthesis, we describe a new stereospecific preparation of cyclic β -enaminoketoesters 2 which are directly prepared ⁶ by condensation between lactim ethers and β -ketoesters and can later be decarboxylated to compounds 1.

Treatment of 2 with sodium alkoxide leads to a β -enaminoester by deacetylation; ⁴ drastic acidic media like trifluoroacetic acid⁶ or hydrobromic acid¹ are not regiospecific and methanesulfonic acid⁷ only gives deacylation, which led us to develop less acidic conditions using thermolysis with boric acid.

Heating (1 h, 220°C) 2 with excess solid boric acid leads, after work up (addition of methanol/hydrochloric acid 9/1 then water, neutralization with potassium carbonate, extraction with chloroform and purification), to exocyclic β -enaminones 1 with satisfactory

yields. This decarboxylation is stereospecific and the Z geometry of compounds 1 is unambiguously defined by the chemical shifts of the α -methylene protons, by comparison with the corresponding β -enaminoesters. 5

Exocyc	lic	R-ens	mi nor	nac 1
		D-Ella		1662 T

n	R	Yield%	Rf (Et ₂0)	bp°C/mm Hg or mp°C/solvent	H ₃ BO ₃ (eq.)	¹H-Nmr	
						δ CH ₂ α	δСНβ
1	CH ₃	50		122/0.18	2	2.55	5.10
1	C ₃ H ₇	46	0.32	a	8	2.58	5.07
1	C ₆ H ₅	60	*****************	109/EtOH ⁹	8	2.73	5.80
2	CH ₃	43		98/0.110	2	2.33	4.93
2	C₃H7	30	0.44	a	8	2.31	4.82
2	C ₆ H ₅	50	0.51	a,10	10	2.45	5.52
3	CH₃	39		110/0.05	2	2.37	4.95
3	C ₃ H ₇	40	0.64	*	8	2.23	4.88
3	C ₆ H ₅	27	0.70	a, 10	10	2.45	5.65

^{*} Oily products purified by column chromatography (silica gel).

This synthetic pathway provides a useful 3 steps stereospecific method for preparation of β -enaminones from very available starting materials.

Aknowl edgement

We are grateful to E. I. DuPont de Nemours, Wilmington, for financial support.

References

- 1. A. E. Wick, P. A. Barlett, and D. Dolphin, Helv. Chim. Acta, 1971, 54, 513.
- 2. P. Slosse and C. Hootele, Tetrahedron, 1981, 37, 4287.
- 3. V.W. Brown and B.P. Moore, Australian J. Chem., 1982, 35, 1255.
- 4. T. Yamazaki, K. Matoba, M. Yajima, M. Nagata, and R. N. Castle, *J. Heterocyclic Chem.*, 1975, 12, 973.
- 5. M. Roth, P. Dubs, E. Götschi, and A. Eschenmoser, Helv. Chim. Acta, 1971, 54, 710.
- P. Brunerie, J.P. Célérier, H. Petit, and G. Lhommet, J. Heterocyclic Chem., 1986, 23, 1183.
- 7. G. Dannhardt, W. Meindl, S. Gussmann, S. Ajili, and T. Kappe, *Eur. J. Med. Chem.*, 1987, 22, 505.
- 8. M. Natsume, M. Takahashi, K. Kiushi, and H. Sugaya, Chem. Pharm. Bull., 1971, 19, 2648.
- 9. W. Führer, V. Rasetti, and G. Rihs, Helv. Chim. Acta, 1985, 68, 1235.
- 10. A. Ilvespaa and W. Führer, Ger. Pat. 2 707 658, 1975; Chem. Abstr. 1977, 88, 22609z.

(Received in France 7 June 1990)